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Abstract

The goal of this paper is to generalize the well-balanced approach for non-equilibrium
flow studied by Wang et al. [27] to a class of low dissipative high order shock-capturing
filter schemes and to explore more advantages of well-balanced schemes in reacting flows.
More general 1D and 2D reacting flow models and new examples of shock turbulence in-
teractions are provided to demonstrate the advantage of well-balanced schemes. The class
of filter schemes developed by Yee et al. [31], Sjögreen & Yee [25] and Yee & Sjögreen [36]
consist of two steps, a full time step of spatially high order non-dissipative base scheme
and an adaptive nonlinear filter containing shock-capturing dissipation. A good property
of the filter scheme is that the base scheme and the filter are stand alone modules in de-
signing. Therefore, the idea of designing a well-balanced filter scheme is straightforward,
i.e., choosing a well-balanced base scheme with a well-balanced filter (both with high order
accuracy). A typical class of these schemes shown in this paper is the high order central dif-
ference schemes/predictor-corrector (PC) schemes with a high order well-balanced WENO
filter. The new filter scheme with the well-balanced property will gather the features
of both filter methods and well-balanced properties: it can preserve certain steady state
solutions exactly; it is able to capture small perturbations, e.g., turbulence fluctuations;
and it adaptively controls numerical dissipation. Thus it shows high accuracy, efficiency
and stability in shock/turbulence interactions. Numerical examples containing 1D and 2D
smooth problems, 1D stationary contact discontinuity problem and 1D turbulence/shock
interactions are included to verify the improved accuracy, in addition to the well-balanced
behavior.

Key words: High order filter methods, WENO schemes, well-balanced schemes, non-
equilibrium flow, chemical reactions, 1D turbulence/shock interactions.

1 Introduction

Recent progress in the development of a class of low dissipative high order filter schemes for
multiscale Navier-Stokes and magnetohydrodynamics (MHD) systems [31, 38, 25, 33, 24, 34,
35, 36] shows good performance in multiscale shock/turbulence simulations.
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The highly parallelizable high order filter methods consist of two steps, a full time step
of spatially high order non-dissipative (or very low dissipative) base scheme and an adaptive
multistep filter. The nonlinear filter consists of the product of a wavelet based flow sensor and
the dissipative portion of a high order shock-capturing scheme. The built-in flow sensors in
the post processing filter control the amounts and types of numerical dissipation. The filter
switches on the dissipations only where needed, and leaves the rest of the flow region free
from numerical dissipation. Only the filter step might involve the use of flux limiters and
approximate Riemann solvers as stabilizing mechanisms to remove Gibbs phenomena related
spurious oscillations resulting from the base scheme step. The more scales that are resolved
by the base scheme, the less the filter is utilized, thereby gaining accuracy and computational
time as the grid is refined. The adaptive numerical dissipation control idea is very general
and can be used in conjunction with spectral, spectral element, finite element, discontinuous
Galerkin, finite volume, and finite difference spatial base schemes. The type of shock-capturing
schemes used as nonlinear dissipation can be the dissipative portion of any high resolution TVD,
MUSCL, ENO, or WENO shock-capturing method [31, 11, 21]. By design, flow sensors, spatial
base schemes and linear and nonlinear dissipation models are stand alone modules. Therefore,
a whole class of low dissipative high order schemes can be derived at ease.

In the recent paper by Wang et al. [27], well-balanced finite difference WENO schemes
and second-order TVD schemes were studied for chemical non-equilibrium flows, extending the
well-balanced finite difference WENO schemes for shallow water equations in [28, 29]. A well-
balanced scheme [13], which can preserve certain nontrivial steady state solutions exactly, may
help minimize some of the spurious oscillations around steady states. It was also shown in [27]
that the well-balanced schemes capture small perturbations of the steady state solutions with
high accuracy. While general schemes can only resolve perturbations at the level of truncation
error with the specific grid, well-balanced schemes can resolve much smaller perturbations,
usually of size 1% or lower of the main steady state flow.

In this paper the same approach will be applied to construct a high order well-balanced filter
scheme for one temperature non-equilibrium flow with reaction terms. The multi-dimensions
hyperbolic system of conservation laws with source terms (also called a balance law)

Ut + ∇ · F (U) = S(U) (1)

is considered, where U is the solution vector, F (U) is the convective flux and S(U) is the
source term. For this type of flow the space variable x does not appear explicitly in the source
term. Thus, the construction of well-balanced schemes can easily go from one-dimension to
multi-dimensions. In this paper, comparing with our earlier work [27], more general 1D and
2D reacting flow models and new examples of shock turbulence interactions are provided to
demonstrate the advantage of well-balanced schemes.

The designing of well-balanced filter schemes is to choose a well-balanced base scheme and
a well-balanced filter part. Then, the filter scheme is almost well-balanced everywhere except
at the interfaces of the filtered region and the non-filtered region (see Sec. 5). Note that in this
article, a ‘well-balanced filter scheme’ refers to such almost well-balancedness. For the filter
scheme without the flow sensor, the resulting filter scheme is well-balanced.

The choice of the sensor will not destroy the well-balanced properties. It has been shown in
the previous work [27] that linear schemes, the second-order Predictor-Corrector (PC) scheme
[32, 14] with TVD filters (such as the Harten-Yee TVD filter [30, 31]), and WENO-Roe schemes
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are well-balanced for certain steady state solutions with zero velocity. A well-balanced WENO-
LF scheme has also been constructed for this type of steady state solutions. High order PC
schemes are linear schemes and thus well-balanced. Therefore, the new filter schemes presented
in this article, CENTVDfi/CENWENOfi or PCTVDfi/PCWENOfi which utilize central/PC
schemes as base schemes and the Harten-Yee TVD filter or the well-balanced WENO schemes
as filter will be well-balanced.

In this paper, only the zero velocity steady state of the reacting flow equations will be
considered in the numerical tests. A steady state with zero velocity implies that the flow has
constant pressure and is in chemical equilibrium. It will be shown that, similarly to well-
balanced WENO schemes, well-balanced filter schemes give machine round-off errors regardless
of the mesh sizes for the steady state solutions of the reactive flow equations. Consequently,
they can resolve small perturbations of such steady state solutions well, even with very coarse
meshes.

Since the regular high order low dissipative filter schemes are designed for shock/turbulence
interactions and the well-balanced schemes can capture small perturbations of the steady state
solutions with high accuracy, the new well-balanced filter schemes take the advantages of both,
thereby making them well suited for computations of turbulent fluctuations on a mainly steady
flow field.

The outline of the paper is at follows: in Sec. 2, the governing equations and the physical
model are described. High order filter schemes and well-balanced schemes are reviewed in Secs. 3
and 4. The proposed high order well-balanced filter scheme is introduced in Sec. 5. Numerical
examples will be shown in Sec. 6. Finally, Sec. 7 gives conclusions and plans for future work. A
brief description of high order PC schemes and the considered time discretization are presented
in the Appendix.

2 Governing equations and physical model

Considering an atmospheric entry flow in chemical nonequilibrium and thermal equilibrium,
the thermodynamic properties account for excitation of the electronic states for the atoms and
molecules, using the rigid-rotor harmonic-oscillator approximation for the molecules [15, 18].

Assuming neither dissipative effects nor radiation, the considered physical model is a system
of hyperbolic conservation laws with source terms denoted by

Ut + ∇ · F (U) = S(U), (2)

U =
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. . .
ρns

ρu
ρe













; F (U) =
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. . .
ρns

u
ρuuT + pI
(ρe+ p)u













; S(U) =













b1
. . .
bns

0
0













; (3)

where ns is the number of species, ρs, the mass density of species s, u, the velocity vector, and
e, the internal energy per unit mass of the mixture. The mixture mass density is defined as
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ρ =
∑ns

s=1 ρs, and the pressure p is given by the perfect gas law

p = RT

ns
∑

s=1

ρs

Ms
, (4)

where R is the universal gas constant, and Ms, the molar mass of species s. The temperature
T can be found from a given total energy by solving

ρe =

ns
∑

s=1

ρses(T ) +
1

2
ρ|u|2, (5)

for T . The internal energy es of species s is a function of temperature

es(T ) = eT
s (T ) + eE

s (T ) + eF
s , s ∈ Ha, (6)

es(T ) = eT
s (T ) + eE

s (T ) + eR
s (T ) + eV

s (T ) + eF
s , s ∈ Hp, (7)

where Ha is the set of atoms and Hp is the set of molecules. The translational energy of species
s is given by

eT
s (T ) =

3

2

R

Ms
T, (8)

and the electronic energy contribution by

eE
s (T ) =

R

Ms

∑

ng
E
s,nθ

E
s,n exp

(

−θE
s,n

T

)

∑

ng
E
s,n exp

(

−θE
s,n

T

) , (9)

where quantities gE
s,n and θE

s,n stand for the degeneracy and characteristic temperature of the
electronic level n of species s. The number of electronic levels retained is limited for mathe-
matical and physical standpoints. The partition function leading to thermodynamic properties
diverges when all levels are accounted for. The maximum number of electronic levels of each
atom and molecule is progressively increased up to a correspondence between the values of
computed enthalpies and accurate reference tables. For molecule s, the rotational energy is
assumed to be described by means of a rigid rotor model

eR
s (T ) =

RT

Ms
, (10)

and the vibrational energy, by means of a harmonic oscillator model

eV
s (T ) =

R

Ms

θV
s

exp
(

θV
s

T

)

− 1
, (11)

where the quantity θV
s stands for the vibrational characteristic temperature of the diatomic

molecule. To account for the energy released in the gas by chemical reactions between the
species, a common level from which all the energies are measured is established by using the
formation enthalpy eF

s at 0oK.
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The source term S(U) describes the chemical reactions occurring in gas flows which result
in changes in the amount of mass of each chemical species. In the general case there are J
reactions of the form

ν′1,jX1 + ν′2,jX2 + · · · + ν′ns,jXns

 ν′′1,jX1 + ν′′2,jX2 + · · · + νns,jXns

, j = 1, . . . , J, (12)

where ν′i,j and ν′′i,j are respectively the stoichiometric coefficients for the reactants and products
of species i in the jth reaction. For non-equilibrium chemistry the rate of production of species
i due to chemical reaction may be written as

bi = Mi

J
∑

j=1

(ν′′i,j − ν′i,j)

[

kf,j

ns
∏

s=1

(

ρs

Ms

)ν′

s,j

− kb,j

ns
∏

s=1

(

ρs

Ms

)ν′′

s,j

]

, i = 1, . . . , ns. (13)

For each reaction j the forward and backward reaction rate coefficients, kf,j and kb,j are assumed
to be known functions of temperature. The forward reaction rate coefficient is given by an
Arrhenius law. Following microreversibity the backward rate coefficient is obtained from the
expression kf,j = kb,j/Ke,j , where the equilibrium constant for the jth reaction is given by the
relation

lnKe,j = −
1

kBT

ns
∑

s=1

[(ν′′s,j − ν′s,j)msgs(pref , T )], (14)

where the reference pressure pref = 1 Pa. The Gibbs free energy gs of species s is a function
of pressure and temperature,

gs(p, T ) = gT
s (p, T ) + gE

s (T ), s ∈ Ha, (15)

gs(p, T ) = gT
s (p, T ) + gE

s (T ) + gR
s (T ) + gV

s (T ), s ∈ Hp. (16)

The translational Gibbs free energy is obtained from

gT
s (p, T ) =

RT

Ms
ln

[

RT

NAp

(

2πMsRT

N2
Ah

2
P

)
3
2

]

, (17)

where the symbol hP stands for Planck’s constant, and NA for Avogadro’s number. The
electronic Gibbs free energy reads

gE
s (T ) = −

RT

Ms
ln

[

∑

n

gE
s,n exp

(

−θE
s,n

T

)]

. (18)

For the diatomic molecule s, the rotational Gibbs free energy is

gR
s (T ) = −

RT

Ms
ln

(

T

θR
s σs

)

, (19)

where symbol σs stands for the steric factor. The vibrational Gibbs free energy is obtained
from the relation

gV
s (T ) =

RT

Ms
ln

[

1 − exp

(

−θV
s

T

)]

. (20)
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3 Description of high order filter methods

For simplicity of presentation, the numerical methods will be described for the one dimensional
equations. In one space dimension F in Eq. (3) becomes a vector. Denote A = ∂F/∂U , the
Jacobian matrix of the one dimensional flux. The eigenvalues of A are

(a1, . . . , am) = (u, . . . , u, u+ c, u− c), (21)

where m is the number of components of vector U , m = ns + 2 in the 1D case. c is the frozen
speed of sound defined by the expression c2 = (κ+1)p/ρwith κ = (

∑ns

s=1 ρsR/Ms)/(
∑ns

s=1 ρscv,s)
based on the species specific heat cv,s = des/dT .

The one dimensional problem is discretized by a uniform grid spacing ∆x and the grid
points xj = j∆x. The time step is denoted by ∆t and time levels are tn = n∆t. Let Un

j denote
the numerical approximation of U(xj , tn). For clarity of presentation, the n- or j-dependencies
are left out when they are unimportant in the discussion below.

Let al
j+1/2, and Rj+1/2 denote the eigenvalues al and the eigenvectors R evaluated at some

symmetric average of Uj and Uj+1, such as Roe’s average [22]. Denote R as the matrix whose
columns are eigenvectors of A (not to be confused with the R in Eq. (4)). Define

αj+1/2 = R−1
j+1/2(Uj+1 − Uj) (22)

as the difference of the local characteristic variables in the x direction.
The low dissipative high order filter scheme developed by Yee et al. [31] suggests using the

artificial compression method of Harten [7] as a flow sensor to limit the amount of numerical
dissipation that is inherent in a scheme. Subsequently, Sjögreen and Yee [25], Yee and Sjögreen
[34, 36] introduced a wavelet decomposition of the data to determine the location where numer-
ical dissipation is needed. The considered filter method contains two steps, a high order low
dissipative spatial base scheme step (not involving the use of approximate Riemann solvers or
flux limiters) and a multistep filter (usually involving the use of approximate Riemann solvers
and flux limiters). The nonlinear filter consists of the product of a wavelet sensor [25] and the
nonlinear dissipative portion of a high-resolution shock-capturing scheme.

We will briefly review the high order filter schemes in this section. For more details, we
refer the readers to [31, 25, 34, 36].

3.1 High order spatial scheme step

The first step of the numerical method consists of a time step via a high order non-dissipative
spatial and high order temporal base scheme operator L. After the completion of a full time
step of the base scheme, the solution is denoted by U ∗

U∗ = L(Un), (23)

where Un is the numerical solution vector at time level n.
The high order non-dissipative spatial base scheme could be a standard central scheme, a

central compact scheme, or a predictor-corrector (PC) scheme [32, 14].
For strong shock interactions and/or steep gradient flows, a small amount of high order

linear dissipation can be added to the base scheme to reduce the time step constraint and
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stability. For example, an eighth-order linear dissipation with the sixth-order central scheme
to approximate F (U)x is written as

∂F

∂x
|x=xj

≈ D06 Fj + d(∆x)7(D+D−)4Uj , (24)

where D06 is the standard sixth-order accurate centered difference operator, and D+D− is the
standard second-order accurate centered approximation of the second derivative. The small
parameter d is scaled with, e.g., spectral radius of A(U), and is in the range of 0.00001-0.001,
depending on the flow problem. d has the sign which gives dissipation in the forward time
direction.

In Section 6, we will use high order central schemes and PC schemes for the base scheme step.
Details on these methods, and other choices of spatial base schemes, are given in Appendix A.

3.2 Adaptive nonlinear filter step (discontinuities and high gradient
capturing)

After the completion of a full time step of the high order base scheme, the second step is to
adaptively filter the solution by the product of a wavelet sensor and the nonlinear dissipative
portion of a high-resolution shock-capturing scheme (involving the use of flux limiters). The
nonlinear filter step can be written

Un+1
j = U∗

j −
∆t

∆x

[

H∗
j+1/2 −H∗

j−1/2

]

. (25)

Here, the filter numerical fluxes are defined in the eigenvector basis by H̄j+1/2, so that

H∗
j+1/2 = Rj+1/2H̄j+1/2. (26)

Denote the elements of the vector H̄j+1/2 by h̄l
j+1/2, l = 1, 2, . . .m. The nonlinear portion of

the filter h̄l
j+1/2 has the form

h̄l
j+1/2 = (sN )l

j+1/2(φ
l
j+1/2). (27)

Here, (sN )l
j+1/2 is the sensor to activate the higher order nonlinear numerical dissipation φl

j+1/2.

(sN )l
j+1/2 is designed to be zero or near zero in regions of smooth flow and near one in regions

with discontinuities. (sN )l
j+1/2 varies from one grid point to another and is obtained from

a wavelet analysis of the flow solution [25]. The wavelet sensor can be obtained from the
characteristic variables for each wave or a single sensor for all waves, based on pressure and
density. The latter is used in this article.

The dissipative portion of the nonlinear filter φl
j+1/2 = gl

j+1/2 − ql
j+1/2 is the dissipative

portion of a high order high-resolution shock-capturing scheme for the local l-th characteristic
wave. Here gl

j+1/2 and ql
j+1/2 are numerical fluxes of the uniformly high order high-resolution

scheme and a high order central scheme for the l-th characteristic wave, respectively.
For the numerical examples, two forms of nonlinear dissipation φl

j+1/2 will be considered,
namely:
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• Dissipative portion of balanced WENO schemes (see Sec. 4). It is obtained by taking
the full WENO scheme and subtracting the central scheme, such as, WENO5-D06 and
WENO7-D08.

• Dissipative portion of the Harten-Yee TVD scheme [30, 31].

The dissipative portion of the Harten-Yee TVD scheme has the form

φl
j+1/2 =

1

2

[

ψ(νl
j+1/2) − (νl

j+1/2)
2
] (

αl
j+1/2 − Q̂l

j+1/2

)

, (28)

where

νl
j+1/2 =

∆t

∆x
al

j+1/2, (29)

aj+1/2 and αj+1/2 are defined in (21) and (22).
The function ψ(z) is an entropy correction to |z| (see [30]) with

ψ(z) =

{

|z| |z| ≥ δ1
(z2 + δ21)/2δ1 |z| < δ1

, (30)

where δ1 is the entropy fix parameter (see [37] for a discussion). Q̂l
j+1/2 is an unbiased limiter

function which can be

Q̂l
j+1/2 = minmod(αl

j−1/2, α
l
j+1/2) + minmod(αl

j+1/2, α
l
j+3/2) − αl

j+1/2 (31)

with
minmod(a, b) = sgn(a) · max{0,min[|a|, b sgn(a)]}. (32)

Remark 1. In [36], Yee and Sjögreen proposed and studied both linear and nonlinear filters,
where the linear filters refer to the standard spectral filter, compact filter, and non-compact high
order linear numerical dissipation. In our paper, only nonlinear filters, especially the dissipative
portion of WENO and TVD schemes are considered.

Remark 2. Yee and Sjögreen also did comparisons of applying the filters between “after each
Runge-Kutta stage” and “after a full time step”. Their research indicated that there is no
advantage of applying the filters “after each Runge-Kutta stage”. In addition, “after a full
time step” is extremely efficient since only one Riemann solve per time step per dimension is
required.

3.3 Flow sensor by multiresolution wavelet analysis of the computed
flow data

A general description of how to obtain different flow sensors (e.g., (sN )l
j+1/2) by multiresolution

wavelet analysis of the computed flow data can be found in Sjögreen and Yee [25] and Yee and
Sjögreen [33].

The wavelet flow sensor estimates the Lipschitz exponent of a grid function fj (e.g., the
density and pressure). The Lipschitz exponent at a point x is defined as the largest α satisfying

sup
h6=0

|f(x+ h) − f(x)|

hα
≤ C, (33)
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and this gives information about the regularity of the function f , where small α means poor
regularity. For example, a continuous function f(x) has a Lipschitz exponent α > 0. A bounded
discontinuity (shock) has α = 0, and a Dirac function (local oscillation) has α = −1. Large
values of α can be used in turbulent flow so that large vortices or vortex sheets can be detected.
For a C1 wavelet function ψ(x) with compact support α can be estimated from the wavelet
coefficients, wm,j , defined as

wm,j = 〈f, ψm,j〉 =

∫

f(x)ψm,j(x)dx, (34)

where

ψm,j = 2mψ

(

x− j

2m

)

(35)

is the wavelet function ψm,j on scalem located at the point j in space. In practical computations
there is a smallest scale determined by the grid size. To estimate the Lipschitz exponent at
j = j0, we evaluate wm,j on the smallest scale, m0, and a few coarser scales, m0 + 1, m0 + 2,
and perform a least squares fit to the line [25]

max
j near j0

log2 |wm,j | = mα+ c. (36)

For more details about the wavelet and the flow sensor, we refer the readers to [25, 36].

4 Description of well-balanced methods

A well-balanced scheme is a scheme that preserves exactly specific steady state solutions of the
governing equations. In the previous work [27] linear schemes, WENO-Roe schemes, the Harten-
Yee TVD scheme, and Predictor-Corrector TVD schemes (with zero entropy correction) were
proven theoretically and numerically to be well-balanced schemes for the non-equilibrium flow
Eq. (2) with zero velocity steady states. We will briefly review the idea of the well-balancedness
in this section.

For the general one dimensional system of balance laws,

Ut + F (U, x)x = S(U, x), (37)

the steady state solution U satisfies

fl(U, x)x = bl(U, x), l = 1, . . . ,m, (38)

where fl and bl are the lth elements of the vectors F (U, x) and S(U, x), and m is the number
of equations in the system.

A linear finite-difference operator D is defined to be one satisfying D(af + bg) = aD(f) +
bD(g) for constants a, b and arbitrary grid functions f and g. A scheme for Eq. (37) is said
to be a linear scheme if all the spatial derivatives are approximated by linear finite-difference
operators.

As proved in [28], under the following two assumptions regarding Eq. (37) and the steady
state solution of Eq. (38), linear schemes with certain restrictions are well-balanced schemes.
Furthermore, high-order nonlinear WENO schemes can be adapted to become well-balanced
schemes.
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Assumption 1. The considered steady state preserving solution U of Eq. (38) satisfies

rj(U, x) = constant, j = 1, 2, . . . (39)

for a finite number of known functions rj(U, x).

Assumption 2. Each component of the source term vector S(U, x) can be decomposed as

bl(U, x) =
∑

i

τi(r1(U, x), r2(U, x), . . . ) t
′
i(x), l = 1, . . . ,m, (40)

for a finite number of functions τi and ti, where τi could be arbitrary functions of rj(U, x), and
τi and ti can be different for different bl(U, x). (Here ti is not to be confused with the time “t”
indicated on all previous conservation laws.)

Now consider the non-equilibrium flow Eq. (2). First, since S(U, x) ≡ S(U), all the t′i(x) = 1.
Next, when the flow is in the steady state, the chemistry is in equilibrium and thus the source
vector S(U) = 0. Therefore, Assumptions 1 and 2 are easily satisfied by taking

ri(U) = bi(U), i = 1, . . . ,m. (41)

Furthermore, linear schemes (such as central and PC schemes) and WENO-Roe schemes are
naturally well-balanced for such steady state solutions of Eq. (2) (see [27]).

A well-balanced finite difference WENO-LF scheme can be constructed with a limiter λ in
the Lax-Friedrichs flux splitting

f±(u) =
1

2
(f(u) ± αλu). (42)

λ is close to 0 or 1 according to whether the solution is in steady state or away from steady
state. λ is constructed by

λ := max
(

min
(

1, (|r1(Ui+1,xi+1)−r1(Ui,xi)|+|r1(Ui−1,xi−1)−r1(Ui,xi)|)
2

|r1(Ui+1,xi+1)−r1(Ui,xi)|2+|r1(Ui−1,xi−1)−r1(Ui,xi)|2+ε

)

,

min
(

1, (|r2(Ui+1,xi+1)−r2(Ui,xi)|+|r2(Ui−1,xi−1)−r2(Ui,xi)|)
2

|r2(Ui+1,xi+1)−r2(Ui,xi)|2+|r2(Ui−1,xi−1)−r2(Ui,xi)|2+ε

)

, . . .
)

,
(43)

where ε is a small number to avoid zero in the denominator and we take it as 10−6 in the
computations. Near the specific steady state, the differences in ri shown in (43) are close to
zero. λ will be near zero when all these differences are small compared with ε. λ is near one if
the solution is far from the steady state, since the differences in ri shown in (43) are now on the
level of O(∆x) and much larger than ε, and then the scheme is the regular WENO-LF scheme.
The limiter does not affect the high order accuracy of the scheme in smooth region for general
solutions of Eq. (2). In the specific steady state, since all the ri are constants, λ becomes zero
and then the scheme maintains the exact solutions for such steady state.

The functions ri in the limiter (43) are used to distinguish between steady and unsteady
states. They are not necessarily the same as in Assumption 1, but they must be necessary

conditions for the steady state. For example, taking λ :=
(

min
(

1, (|u(Ui+1,xi+1)|+|u(Ui,xi)|)
2

|u(Ui+1,xi+1)|2+|u(Ui,xi)|2+ε

)

for the zero velocity steady state also works well in practice, because u = 0 is a necessary
condition for the steady state.
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5 High order well-balanced filter scheme

The construction of high order well-balanced filter schemes is straightforward. The first step
is to choose any well-balanced low-dissipative scheme, e.g., a central scheme (CENx), or a
predictor corrector scheme (PCx) (here x denotes the order of accuracy of the scheme, and will
be 2, 4, 6, or 8) as base scheme. The second step is to choose a well-balanced filter, such as the
dissipative portion of the TVD scheme (28) or the high order well-balanced WENO scheme.
In fact, it was proved in [27] that at the zero velocity steady state solution, Rj+1/2H̄j+1/2 in
Eq. (26) is zero and thus can be used as the filter part for a well-balanced filter scheme.

Here, we would like to remark that these constructed filter schemes are well-balanced, except
at the interface between the filtered and non-filtered regions. Because in the interface of these
two regions, the numerical fluxes get information from different schemes (base scheme part and
filter part), the schemes will not be well-balanced at those interface cells. This is not a serious
concern, since the interface is only a small portion of the whole computational domain. Also,
since the filter is turned on only at the shock region, the transition region of the shock is usually
far away from the considered zero velocity steady state. Thus, there is no need to require the
schemes to be well-balanced at the interfaces.

The linear dissipation part d(∆x)7(D+D−)4Uj in the base scheme (24) cannot preserve the
steady state solutions. Similar to the Lax-Friedrichs flux, since there are no assumptions on
the density functions, the dissipation d(∆x)7(D+D−)4Uj may produce non-zero values in the
steady states. Here, the same idea of constructing well-balanced WENO-LF schemes is applied,
i.e., multiplying a limiter λ (43) to the linear dissipation part to turn off the linear dissipation
in the steady state area. Since the linear dissipation is only needed for stability concern before
reaching steady state, numerical tests show that turning it off by the limiter λ does not affect
the stability of the solution. With the limiter λ, the filter schemes will have no linear dissipation
in the steady state and thus will maintain the exact steady state solutions.

In this paper the considered well-balanced filter schemes are low order central filter schemes
with TVD filter (CEN2TVDfi and CEN4TVDfi), and high order central filter schemes with
balanced WENO filter (CEN6WENO5fi and CEN8WENO7fi). Similar considered PC filter
schemes are PC2TVDfi, PC4TVDfi, PC6WENO5fi and PC8WENO7fi. For the same order PC
and central filter schemes, the accuracies are similar. Comparing to central filter schemes, PC
filter schemes allow a larger CFL number for time integration. However, the PC filter schemes
only allow first and second order time discretizations. The central filter schemes allow a wider
class of time discretizations.

6 Reaction model and test cases

In this section, the gas model for sub-orbital Earth reentries comprising five species N2, O2,
NO, N, and O is described. Then, different numerical tests of the considered high order well-
balanced filter schemes for one- and two- dimensional reacting flows are performed. The first
example is to numerically verify that the constructed filter schemes are well-balanced by time-
marching on a nontrivial steady state. In this test the well-balanced filter schemes will show
round-off numerical errors for a specific steady state solution. The second example is a small
perturbation over the steady state. We can observe the well-balanced filter schemes showing
their advantage in resolving the perturbations in very coarse meshes. For 1D numerical tests,
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we show three additional examples involving shocks. The first one is a stationary contact dis-
continuity problem, where the left and right states of the discontinuity are both in equilibrium.
We will show that if there are small perturbations on the two sides of the discontinuity, the
well-balanced schemes can capture them very accurately. The second shock example is a 1D
turbulence/shock interaction problem where only the right state of the shock is in equilibrium.
If there are small perturbations on the right of the shock, the well-balanced schemes will well
resolve them, then when the shock passes through those perturbations, well-balanced schemes
will have more accurate results than the non well-balanced scheme on the left of the shock. The
third example is a shock tube problem to test the shock-capturing capability of the considered
schemes. There numerical test cases are to demonstrate that well-balanced schemes will not
destroy the non-oscillatory shock resolution away from the steady state.

6.1 Reaction model

The air mixture comprises 5 species, N2, O2, NO, N, and O, with elemental fractions 79%
for nitrogen and 21% for oxygen. The spectroscopic constants used in the computation of the
species thermodynamic properties (θV

s , θE
s,n, θR

s , gE
s in Sec. 2) and the formation enthalpies

are obtained from Gurvich et al. [6]. The chemical mechanism comprises three dissociation
recombination reactions for molecules

N2 +M 
 2N +M, (see [20]) (44)

O2 +M 
 2O +M, (see [20]) (45)

NO +M 
 N +O +M, (see [19]) (46)

where M is a catalytic particle (any of the species N2, O2, NO, N, and O), and two Zeldovich
reactions for NO formation

N2 +O 
 NO +N, (see [2]) (47)

O2 +N 
 NO +O, (see [3]). (48)

6.2 One dimensional numerical results

6.2.1 Well-balanced test

The purpose of the first test problem is to numerically verify the well-balanced property of the
proposed filter schemes. The special zero velocity stationary case with

T = 1000× (1 + 0.2 sin(πx)) K, p = 105 N/m2, u = 0 m/s, (49)

is considered. The initial composition is based on the local thermodynamic equilibrium (LTE)
assumption. Given Eq. (49) and the source term S(U) = 0, each species is uniquely determined.

Eq. (49) is chosen as the initial condition which is also the exact steady state solution, and
the results are obtained by time-accurate time-marching on the steady state. The computational
domain is [−1, 1]. The L1 relative errors of temperature at t = 0.01 (about 1000 time steps
for N = 100 grid points) are listed in Table 1. The L1 relative error is measured to be the
difference between the exact solution Eq. (49) and the numerical solution divided by the L1

12



Table 1: L1 relative errors for temperature by central/PC filter schemes at t = 0.01.

N error error error error

CEN2TVDfi CEN4TVDfi CEN6WENO5fi CEN8WENO7fi
50 3.84E-11 3.84E-11 3.79E-11 3.67E-11
100 3.79E-11 3.79E-11 3.68E-11 3.62E-11

PC2TVDfi PC4TVDfi PC6WENO5fi PC8WENO7fi
50 3.83E-11 3.76E-11 3.69E-11 3.63E-11
100 3.88E-11 3.85E-11 3.81E-11 3.78E-11

Table 2: L1 relative errors for temperature by 5th order WENO schemes at t = 0.01.

N error error error

WENO-Roe WENO-LF balanced WENO-LF
50 3.92E-11 2.31E-05 3.90E-11
100 3.92E-11 8.29E-07 3.92E-11

norm of the exact solution. We emphasize again that the exact steady state solution is not
a constant or a polynomial function, making it non-trivial for the well balanced schemes to
achieve round-off level errors on all grids.

Table 1 shows that the considered high order central filter schemes and PC filter schemes
are well-balanced because they produce errors at the level of machine round-off errors in double
precision. For comparison, the results by fifth order WENO schemes are also listed in Table 2.
The WENO-Roe scheme and balanced WENO-LF scheme produce round-off errors. However,
the WENO-LF without the limiter lambda in (43) is not well-balanced and shows truncation
errors in the computation.

6.2.2 Small perturbation

The following test problem will demonstrate the advantages of well-balanced schemes through
the problem of a small perturbation over a stationary state.

The same stationary solution, Eq. (49), is considered. A small perturbation ε = 10−3 ×
sin(πx) is added to the initial condition for velocity, i.e.,

u′ = u+ ε (50)

at t = 0. The other quantities are kept unperturbed. Fig. 1 shows the velocities by central and
PC filter schemes of orders 2, 4, 6 and 8 at t = 0.1. The reference results are computed by fifth
order WENO-Roe with 1200 points and are considered to be “exact”.

The results show that all the considered high order well-balanced filter schemes can capture
the small perturbation well in a very coarse mesh. Especially for the schemes with order higher
than 2, only 50 points are used. However, the non well-balanced schemes behave in a very
oscillatory fashion, such as the regular WENO-LF with 200 points (Fig. 2). They can only
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Figure 1: Small perturbation of velocity results by filter schemes: ε = 10−3×sin(πx). Solid lines
are the reference 1200 point solution. Left: central filter schemes; Right: PC filter schemes.

resolve the solution when the mesh is refined enough such that the truncation error of the
scheme is much smaller than the perturbation.

6.2.3 1D stationary contact discontinuity problem

The third example is a 1D stationary contact discontinuity problem on the domain [−5, 5].
A stationary contact discontinuity is located at x = 0. The flow contains zero velocity and
constant pressure 20 N/m2 everywhere. The temperature has an initial condition

T =

{

500× (1 + 0.1 sin(2πx)), x < 0
300× (1 + 0.1 sin(2πx)), x > 0

. (51)

The densities for each species can be solved by LTE condition. We add a small perturbation
of the velocity over the whole domain

u′ = u+ 0.05× sin(πx). (52)

The computation stops at time t = 0.01. We remark that the solutions were computed on a
larger domain [−6, 6] but truncated on [−5, 5] for not considering the effects by the boundary
condition. Figs. 3 and 4 show the densities, temperatures, velocities and pressures by the
balanced WENO-LF scheme and the regular WENO-LF scheme with 100 cells. The reference
solution is computed by the WENO-Roe scheme with 1200 cells. From Fig. 3 we can see that
the balanced WENO-LF produces a more accurate result than the regular WENO-LF scheme.
The regular WENO-LF scheme has a discrepancy from the reference solution on the waves and
it cannot capture the small wave close to the shock. Unlike the density and temperature, the
velocity and pressure are constant at the initial time. Thus it is more clear to see the difference
between the balanced WENO-LF and the regular WENO-LF on the velocity and pressure
results. From Fig. 4, we can see the results by the balanced WENO-LF are indistinguishable
from the reference solution. However, the regular WENO-LF produces large oscillations due to
the truncation errors.
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Figure 2: Small perturbation of velocity results by WENO-LF scheme: ε = 10−3 × sin(πx).
WENO-LF 200 points: dash-dot; Reference 1200 points: solid.

Figs. 5 and 6 show the results by the central filter schemes. The considered central fil-
ter schemes here are CEN2TVDfi and CEN4TVDfi with 200 cells, and CEN6WENO5fi and
CEN8WENO7fi with 100 cells. Similar for PC filter schemes, the results by PC2TVDfi,
PC4TVDfi with 200 cells and PC6WENO5fi and PC8WENO7fi with 100 cells are shown in
Figs. 7 and 8. All the well-balanced central/PC filter schemes can capture the small perturba-
tions very well.

6.2.4 1D shock/turbulence interaction problem

The fourth example is a 1D shock/turbulence interaction problem (also referred to as the Shu-
Osher problem [23]) for reacting flows on the domain [−5, 5]. Initially a shock is located at
x = −4. The shock is moving at the speed 500 m/s to the right. The right state of the flow
consists two parts, the first part is a constant equilibrium state from -4 to 1 and the second part
is an oscillatory equilibrium state from 1 to 5 with sine waves in densities and temperature.
The conditions are given by

(TR, pR, vR) =

{

(500, 20, 0), x ∈ [−4, 1]
(500× (1 + 0.1 sin(2πx)), 20, 0), x ∈ [1, 5]

. (53)

Given the temperature and pressure, the densities for each species at the LTE state can be
uniquely determined by the LTE condition. The left equilibrium state can be calculated ac-
cording to the Rankine-Hugoniot jump condition.

Since the right state of the flow is a zero velocity LTE state, the well-balanced schemes can
resolve it with machine round-off errors. If we add a small perturbation of the velocity all over
the right state

u′ = u+ 10−3 × sin(πx), x ∈ [−4, 5], (54)

the well-balanced schemes will be able to capture this small perturbation very well.

15



x

d

-4 -2 0 2 4
0.0001

0.00012

0.00014

0.00016

0.00018

Reference
balanced WENO-LF 100
WENO-LF 100

x

T

-4 -2 0 2 4

300

350

400

450

500

550 Reference
balanced WENO-LF 100
WENO-LF 100

Figure 3: 1D stationary contact discontinuity problem by WENO-LF schemes: left: density of
O2; right: temperature.
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Figure 4: 1D stationary contact discontinuity problem by WENO-LF schemes: left: velocity;
right: pressure.
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Figure 5: 1D stationary contact discontinuity problem by central filter schemes: left: density
of O2; right: temperature.
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Figure 6: 1D stationary contact discontinuity problem by central filter schemes: left: velocity;
right: pressure.
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Figure 7: 1D stationary contact discontinuity problem by PC filter schemes: left: density of
O2; right: temperature.
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Figure 8: 1D stationary contact discontinuity problem by PC filter schemes: left: velocity;
right: pressure.
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Figure 9: 1D Shu-Osher problem of velocity results by WENO-LF schemes: left: global; right:
zoomed in.

At time equal to 0.012 seconds, the shock moves to x = 2. The shock first passed through
the small perturbation of the velocity and then passed through one sine wave (at the region
x ∈ [1, 2]).

The reference solution is computed by WENO-Roe with 2000 cells. Figs. 9 and 10 show the
comparison of the regular 5th order WENO-LF scheme and the balanced 5th order WENO-
LF scheme on velocity and pressure with 100 cells. From the global views of velocity and
pressure (the left subplots of Figs. 9 and 10), we can hardly see any differences between these
two schemes. However, zooming in the region [−5, 1], we can see that the balanced WENO-LF
scheme can capture the small perturbation very well, whereas the regular WENO-LF scheme
which is not well-balanced produces significantly larger errors (the right subplots of Figs. 9 and
10). The density and temperature results by the WENO-LF schemes are also shown in Fig. 11.

The results by central and PC filter schemes are shown in Figs. 12, 13, 14, 15, 16 and
17. We remark that for the strong shock problem, the filter schemes cannot be essentially
non-oscillatory around the shocks (although the oscillations are hardly seen from the global
views). The well-balanced schemes are proposed to have advantages for the region close to
the steady state, so we only focus on the regions away from the shocks (x ∈ [−5,−2]). The
considered central filter schemes here are CEN2TVDfi and CEN4TVDfi with 300 cells, and
CEN6WENO5fi and CEN8WENO7fi with 100 cells. The considered PC filter schemes here are
PC2TVDfi and PC4TVDfi with 300 cells, and PC6WENO5fi and PC8WENO7fi with 200 cells.
Because for the moving shock problem, the filtered region is moving with the shock, and the
switches between filtered and unfiltered will cause non well-balancedness, the results of moving
shock in this section are not as impressive as the results of the stationary contact discontinuity
in Sec. 6.2.3 for such filtered schemes. We use a more refined mesh for low order schemes
CEN2TVDfi, CEN4TVDfi, PC2TVDfi and PC4TVDfi. High order schemes CEN6WENO5fi
and CEN8WENO7fi with 100 cells have underresolved solutions in the crest and trough of the
waves. PC6WENO5fi and PC8WENO7fi with a more refined mesh 200 cells can resolve them
better.
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Figure 10: 1D Shu-Osher problem of pressure results by WENO-LF schemes: left: global; right:
zoomed in.
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Figure 11: 1D Shu-Osher problem by WENO-LF schemes: left: density; right: temperature.
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Figure 12: 1D Shu-Osher problem of velocity results by central filter schemes: left: global;
right: zoomed in.
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Figure 13: 1D Shu-Osher problem of pressure results by central filter schemes: left: global;
right: zoomed in.
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Figure 14: 1D Shu-Osher problem by central filter schemes: left: density; right: temperature.
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Figure 15: 1D Shu-Osher problem of velocity results by PC filter schemes: left: global; right:
zoomed in.
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Figure 16: 1D Shu-Osher problem of pressure results by PC filter schemes: left: global; right:
zoomed in.
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Figure 17: 1D Shu-Osher problem by PC filter schemes: left: density; right: temperature.
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Figure 18: Shock tube problem by CEN6WENO5fi: Left: temperature; Middle: velocity; Right:
mass fraction of N2 (CEN6WENO5fi with 300 points: dash-dot; Reference 1200 points: solid).

6.2.5 A shock tube problem

The last 1D example is a shock tube problem. A diaphragm is located at x = 0 which separates
the right chamber from the left chamber. The right chamber has cold air with pressure 0.6 ×
105 N/m2 and temperature 300K. The gas in the left chamber has high pressure 6× 105 N/m2

and high temperature 3000K. Both gases are in LTE condition. The computational domain is
[−5, 5] in the lab frame.

The results are computed at t = 0.001. The solution is no longer in steady state. This
example is to test the shock capturing ability of our well-balanced filter schemes. The numerical
results of temperature, velocity and mass fraction of N2 (from left to right) computed by
CEN6WENO5fi, CEN8WENO7fi, PC6WENO5fi and PC8WENO7fi are plotted in Figs. 18,
19, 20 and 21. As expected, the rarefaction wave, contact surface and shock appear in the
temperature solution. Since the velocity is consistent through the contact surface, there are only
rarefaction wave and shock appearing in the velocity solution. Furthermore, mass is conserved
during the shock. No shock appears in the mass solution. All the considered well-balanced
filter schemes can capture the shocks sharply without oscillations.

6.3 Two dimensional numerical results

As mentioned in the beginning, extending the well-balanced schemes to the zero velocity steady
state of 2D reacting flow is trivial because the reacting term does not explicitly depend on the
dimensions. In this section, similar well-balanced tests to 2D reacting flow will be performed.

6.3.1 2D Well-balanced test

Similar to 1D, the first example is to check that our scheme maintains the 2D zero velocity
steady state exactly. The 2D special stationary case

T = 1000× (1 + 0.2 sin(π(x + y))) K, p = 105 N/m2, u = 0 m/s, (55)
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Figure 19: Shock tube problem by CEN8WENO7fi: Left: temperature; Middle: velocity; Right:
mass fraction of N2 (CEN8WENO7fi with 300 points: dash-dot; Reference 1200 points: solid).
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Figure 20: Shock tube problem by PC6WENO5fi: Left: temperature; Middle: velocity; Right:
mass fraction of N2 (PC6WENO5fi with 300 points: dash-dot; Reference 1200 points: solid).
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Figure 21: Shock tube problem by PC8WENO7fi: Left: temperature; Middle: velocity; Right:
mass fraction of N2 (PC8WENO7fi with 300 points: dash-dot; Reference 1200 points: solid).
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Table 3: L1 relative errors for temperature by central/PC schemes at t = 0.01.

N ×N error error error error

CEN2TVDfi CEN4TVDfi CEN6WENO5fi CEN8WENO7fi
50 × 50 4.14E-11 4.14E-11 4.21E-11 4.30E-11

100× 100 4.04E-11 3.69E-11 3.73E-11 3.82E-11
PC2TVDfi PC4TVDfi PC6WENO5fi PC8WENO7fi

50 × 50 4.13E-11 4.20E-11 4.24E-11 4.29E-11
100× 100 4.03E-11 4.07E-11 4.10E-11 4.13E-11

Table 4: L1 relative errors for temperature by 5th order WENO schemes at t = 0.01.

N ×N error error error

WENO-Roe WENO-LF balanced WENO-LF
50 × 50 3.91E-11 4.59E-05 3.91E-11

100× 100 3.92E-11 1.61E-06 3.92E-11

is considered. The computation is performed to t = 0.01 (about 2000 time steps for 100× 100
grid points) on the domain [−1, 1]2. Table 3 shows the L1 relative errors for the temperature
T . We can clearly see that the L1 relative errors are at the level of round-off errors, verifying
the well-balancedness of the considered central filter and PC filter schemes for 2D reacting
flow. For comparison, the results by fifth order WENO schemes are also listed in Table 4. The
WENO-Roe scheme and balanced WENO-LF scheme produce round-off errors. However, the
regular WENO-LF , which is not well-balanced, shows truncation errors in the computation.

6.3.2 2D small perturbation test

The second example is again a small perturbation test but on a 2D steady state. The same 2D
steady state solution Eq. (55) is considered. A small perturbation ε = 10−3 × sin(π(x + y)) is
added to the initial condition of velocity in the x direction, i.e.,

u′ = u+ ε (56)

at t = 0. The other quantities are kept unperturbed. The reference solution is computed
by WENO-Roe scheme with 200 × 200 points. Fig. 22 show the contours of velocity by 2nd
order central/PC TVD filter schemes at t = 0.01. The results by sixth and eighth central/PC
WENO filter schemes are shown in Figs. 23 and 24. The velocity contour by regular WENO-LF
is shown in Fig. 25. The 1D cross-section results by PC filter schemes, central filter schemes
and WENO-LF are shown in Fig. 26 left, middle and right subplots separately. We can see that
our well-balanced filter schemes can capture the small perturbation in a coarse mesh very well
(especially for the schemes with order higher than 2 where only 40× 40 is used). However, the
WENO-LF, which is not well balanced, produces large oscillations even in a mesh 100 × 100
(Fig. 25 and right subplots of Fig. 26).
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Figure 22: 2D small perturbation of velocity results by filter schemes: ε = 10−3× sin(π(x+y)).
Left: CEN2TVDfi 100× 100 points; right: PC2TVDfi 100× 100 points.
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Figure 23: 2D small perturbation of velocity results by central filter schemes: ε = 10−3 ×
sin(π(x+ y)). Left: CEN6WENO5fi 40 × 40 points; right: CEN8WENO7fi 40 × 40 points.
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Figure 24: 2D small perturbation of velocity results by PC filter schemes: ε = 10−3× sin(π(x+
y)). Left: PC6WENO5fi 40 × 40 points; right: PC8WENO7fi 40 × 40 points.
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Figure 25: 2D small perturbation of velocity results by WENO-LF schemes: ε = 10−3 ×
sin(π(x+ y)). WENO-LF 100× 100 points.
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Figure 26: Cross section of 2D velocity results at y = 0: ε = 10−3 × sin(π(x+ y)). Left: central
filter schemes; middle: PC filter schemes; right: WENO-LF.

7 Concluding remarks

In this paper the well-balanced approach is extended to the high order filter schemes in solving
five species reacting flow in one and two space dimensions. This is a generalization of the
work in our earlier work [27], more general 1D and 2D reacting flow models and new examples
of shock turbulence interactions are provided to demonstrate the advantage of well-balanced
schemes. Numerical examples are given to demonstrate the well-balanced property, accuracy,
good capturing of the small perturbation of the steady state solutions, and the non-oscillatory
shock resolution of the proposed well-balanced filter schemes. Because of the property of the
zero velocity steady state solution of the reacting flow, the extension to any number of species
and other reaction models is straightforward. Future research will consider the non-zero velocity
steady state and the advantages of well-balanced schemes to various steady state problems.
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A Predictor-Corrector schemes and other spatial base schemes

Samples of the high-order base schemes for Fx can be of the following types.
Central difference operators:
CEN4:

Fx ≈
1

12∆x
(Fj+2 − 8Fj+1 + 8Fj−1 − Fj−2), (57)

CEN6:

Fx ≈
1

60∆x
(Fj+3 − 9Fj+2 + 45Fj+1 − 45Fj−1 + 9Fj−2 − Fj−3). (58)
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Compact central difference operators (Hirsh [8], Ciment and Leventhal [4], and Lele [12]). Here

Fx ≈
1

∆x
(A−1

x BxF )j , (59)

where for a fourth-order approximation

(AxF )j = 1
6 (Fj+1 + 4Fj + Fj−1),

(BxF )j = 1
2 (Fj+1 − Fj−1),

(60)

and a sixth-order approximation

(AxF )j = 1
5 (Fj+1 + 3Fj + Fj−1),

(BxF )j = 1
60 (Fj+2 + 28Fj+1 − 28Fj−1 − Fj−2).

(61)

Predictor-corrector difference operators:
PC4:

DpFj = 1
6∆x (7Fj − 8Fj−1 + Fj−2) ,

DcFj = 1
6∆x (−7Fj + 8Fj+1 − Fj+2) ,

(62)

PC6:
DpFj = 1

30∆x (37Fj − 45Fj−1 + 9Fj−2 − Fj−3) ,
DcFj = 1

30∆x (−37Fj + 45Fj+1 − 9Fj+2 + Fj+3) ,
(63)

and PC8:

DpFj = 1
420∆x (533Fj − 672Fj−1 + 168Fj−2 − 32Fj−3 + 3Fj−4) ,

DcFj = 1
420∆x (−533Fj + 672Fj+1 − 168Fj+2 + 32Fj+3 − 3Fj+4) ,

(64)

where DpF is the PC differencing operator approximating Fx at the first step (predictor step)
and DcF is the PC differencing operator at the second step (corrector step). New forms of the
upwind biased PC methods including compact formulations developed by Hixon and Turkel
[9, 10] are also applicable as spatial base schemes. Interested readers should refer to their paper
for the various upwind-biased PC formulae. The choice of the time integrators for these types
of PC methods is more limited. For example, if second-order time accuracy is desired, then
(62), (63) and (64) in conjunction with the appropriate second-order Runge-Kutta method
are analogous to the familiar 2-4, 2-6 and 2-8 MacCormack schemes developed by Gottlieb and
Turkel [5] and Bayliss et al. [1]. Here the first number refers to the order of accuracy for the time
discretization and the second number refers to the order of accuracy or the spatial discretization.
However, in this case one achieves the second-order time accuracy without dimensional splitting
of the Strang type [26]. For higher than second-order time discretizations, only certain even
stage Runge-Kutta methods are applicable. For compatible fourth-order Runge-Kutta time
discretizations, see Hixon and Turkel for possible formulae. For example, the classical fourth-
order Runge-Kutta is applicable provided one applies the predictor and the corrector step twice
for the four stages, i.e., the predictor step for the first and third stages and the corrector step
for the second and fourth stages.

For the considered 1D system with source term (2), the predictor-corrector scheme with
2nd-order implicit explicit Runge-Kutta in time takes the form

U (1) = Un − ∆tDpF (tn, Un) + ∆tS(tn, Un), (65)

Un+1 = ((U (1) + Un) − ∆tDcF (tn+1, U (1)) + ∆tS(tn+1, Un+1))/2, (66)
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The PC operators are modified at boundaries in a stable way by the summation-by-part
(SBP) operators [17, 16, 33]. If Db is the standard pth order SBP for the centered difference
operators, then the pth order PC operators are modified as follows,

Fx ≈

{

DpFj , j = nb + 1, . . . , N
(2Db −Dc)Fj , j = 1, . . . , nb

(67)

at the predictor step and

Fx ≈

{

DcFj , j = 1, . . . , N − nb

(2Db −Dp)Fj , j = N − nb + 1, . . . , N
(68)

at the corrector step, where N is the number of grid points and nb is the number of points that
need boundary modified difference operators.
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